منابع مشابه
Annihilators of Local Cohomology in Characteristic Zero
This paper discusses the problem of whether it is possible to annihilate elements of local cohomology modules by elements of arbitrarily small order under a fixed valuation. We first discuss the general problem and its relationship to the Direct Summand Conjecture, and next present two concrete examples where annihilators with small order are shown to exist. We then prove a more general theorem...
متن کاملAnnihilators of distributions associated with algebraic local cohomology of a hypersurface
Let f be a real-valued real analytic function in several variables. Then we associate with each algebraic local cohomology class u with support in f = 0 a distribution (generalized function) ρ(u) in terms of the residue of fλ + with respect to λ at a negative integer. Then ρ constitutes a homomorphism of modules over the sheaf of analtyic functions but not over the sheaf of differential operato...
متن کاملOn natural homomorphisms of local cohomology modules
Let $M$ be a non-zero finitely generated module over a commutative Noetherian local ring $(R,mathfrak{m})$ with $dim_R(M)=t$. Let $I$ be an ideal of $R$ with $grade(I,M)=c$. In this article we will investigate several natural homomorphisms of local cohomology modules. The main purpose of this article is to investigate when the natural homomorphisms $gamma: Tor^{R}_c(k,H^c_I(M))to kotim...
متن کاملTame Loci of Generalized Local Cohomology Modules
Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2006
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2006.05.037